Search results

1 – 2 of 2
Article
Publication date: 10 December 2020

Xiaoping Zhang, Yanhui Li, Meixiu Li, Qiuju Du, Hong Li, Yuqi Wang, Dechang Wang, Cuiping Wang, Kunyan Sui, Hongliang Li, Yanzhi Xia and Yuanhai Yu

In order to discover a new adsorbent that can be used to purify dye wastewater in the textile and apparel industry, a novel type of graphene oxide/gluten composite material using…

Abstract

Purpose

In order to discover a new adsorbent that can be used to purify dye wastewater in the textile and apparel industry, a novel type of graphene oxide/gluten composite material using an improved acid bath coagulation method was synthesized, which can remove methylene blue in an aqueous environment.

Design/methodology/approach

After experimentally compounding different ratios of graphene oxide and gluten, the graphene oxide/gluten composite material with 20% graphene oxide content and superlative adsorption effect was chosen. The synthesized material was characterized by different techniques such as FT-IR and SEM, indicating the microstructure of the material and the success of the composite. Various factors were considered, namely, the influence of temperature, dosage, pH and contact time. The isotherms, kinetics and thermodynamic parameters were successively discussed.

Findings

The qmax value of 214.29 mg/g of the material was higher compared to the general sorbent, thus, the graphene oxide/gluten composite material was a suitable sorbent for methylene blue removal. Overall, the graphene oxide/gluten composite material can be considered as an effectual and prospective adsorbent to remove methylene blue in the textile and apparel industrial effluent.

Originality/value

Graphene oxide is a potentially excellent sorbent. However, the high dispersibility of GO is detrimental to adsorption, it disperses rapidly in an aqueous solution making separation and recovery difficult. The high load capacity and recyclability of gluten as a colloid make it a suitable carrier for fixing GO. Studies on the combination of GO and GT into composite adsorption material and for the removal of dyes from dyeing wastewater have not been reported. The composite material research on GO and GT can provide new ideas for the research of these kinds of materials and contribute to its wider and convenient application in wastewater treatment.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 2 of 2